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1. Introduction 

Over the past decade, academics and policy actors alike have raised awareness to climate change 

as a potential major driver of human mobility (e.g., Foresight, 2011; Hunter & Simon, 2022; IPCC, 

2022; McLeman, 2014; Piguet, 2010; Rigaud et al., 2018). Despite undisputable connections between 

extreme weather events and short-term displacement, empirical evidence linking broader 

categories of climatic conditions with migratory outcomes remains mixed (Beine & Jeusette, 2021; 

Cattaneo et al., 2019; Ferris, 2020; Hoffmann et al., 2020), contrasting the widespread but 

contentious notion of “climate refugees” (Boas et al., 2019). 

There are probably both substantive and methodological reasons for the diverging results in the 

literature. Theoretically, the influence of shifting climatological and environmental conditions on 

people’s motivation to move is thought to be highly dependent on both individual- and society-

level contextual factors, many of which are hard to quantify and incorporate in statistical models. 

For example, whereas adverse climatic changes generally constitute a greater challenge to the 

livelihoods and wellbeing of marginalized populations, thus potentially increasing motivation to 

relocate, privileged people more often possess skills, networks, and resources that increase the 

opportunity for migration. Many of the people most vulnerable to environmental hazards, for 

whom mobility could be an especially effective coping strategy, simply lack the means to move in 

response to a household shock (Adams, 2016; Black, Bennett, et al., 2011). Although several notable 

conceptual works (e.g., Adger et al., 2015; Black, Adger, et al., 2011; Gemenne et al., 2014) have 

greatly influenced academic thinking on the topic, there still exists no single, unified, theoretical 

framework that adequately captures the complex, context-dependent climate-migration 

relationship (Cattaneo et al., 2019). 

Aside from theoretical opacity, lack of convergence of findings in the quantitative literature is also 

likely due to heterogeneity in operationalization of core concepts. Considering the outcome 

variable, migration can be broken down into distinct analytical categories reflecting degrees of 

human agency (sometimes dichotomized as voluntary vs. forced migration; the latter 

encompassing refugees, asylum seekers, and displaced persons), purpose (protection; family 

reunification; education / labor opportunities; return migration), destination (internal vs. 

international; rural-rural vs. rural-urban migration), and various temporal characteristics (e.g., 

temporary vs. permanent migration). The measurement of migration likewise varies by capturing 

(inter alia) migrant stocks, migration inflows, migration outflows, bilateral migration flows, net 

migration, or urbanization rate.  

Regarding the treatment variable of interest – climate – a variety of theoretically plausible 

indicators have been explored, including levels, first-difference changes, and deviations from long-

term means in temperatures, evapotranspiration, and precipitation. Several studies also explore 

the occurrence of extreme weather events, e.g., floods and droughts.  

The chosen level of analysis in the literature varies between individual-level, survey-based 

analysis and aggregate studies of migration between subnational entities (administrative units of 

grid cells) or between countries, relying on data observed at monthly, yearly, 5-yearly, or decadal 

time intervals. Relatedly, studies vary in terms of geographic scope; while some are global or cover 

countries across all world regions, other rely on data from specific regions or single countries. 

Lastly, heterogeneity in findings might be partly attributable to differences in estimation method. 

The most common approach is econometric regression analysis aiming at estimating causal effects 

of climatic exposure (either directly or indirectly, considering the global average effect and 

exploring how it varies across contexts), although a few recent studies focus on building models 
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with high predictive accuracy and explore the predictive contribution of adding climate 

information (e.g., Clement et al., 2021; Kiossou et al., 2020; Schutte et al., 2021). Each approach 

comes with a distinct set of assumptions that must be considered when inferring implications of 

the results for the posed research question.  

1.1 Our Approach: Sensitivity Analysis 

Considering the plethora of reasonable empirical approaches to study whether and how climate 

influences human mobility, we cannot provide a coherent, comprehensive, and inclusive analysis 

that covers all or many of the alternative analytical choices outlined above here. Instead, we zoom 

in on a specific mobility category – international migration – and consider a dominant modelling 

approach, namely the gravity model, to explore the sensitivity of the estimated effect of climatic 

exposure across specifications.1 Although most migration occurs within state borders (Rigaud et 

al., 2018), climate change and associated physical process are expected to amplify international as 

well as internal migration in the future (IPCC, 2022), increasing political salience around human 

habitability and mobility in vulnerable regions of the world. Importantly, data quality is judged to 

be considerably higher for international migration, although we stress that results reported here do 

not necessarily speak to the robustness of climatic drivers on internal migration. 

A large number of published articles have attempted to identify a causal effect of a climatic 

treatment on international migration flows using the gravity model (e.g., Abel et al., 2019; 

Backhaus et al., 2015; Beine & Parsons, 2015; Cai et al., 2016; Coniglio & Pesce, 2015). They report 

varyingly that temperature and/or precipitation either is not associated with migration outcomes, 

is positively and significantly associated with migration, or is positively and significantly affecting 

migration under particular conditions (e.g., in interaction with agricultural dependencies). 

We employ a sensitivity analysis approach to explore and discuss various estimation choices, 

such as the log- linear vs Poisson specification, various fixed effects specifications (in origin, 

destination, time, paired), the variance-covariance estimator (robust and clustered standard 

errors), spatial dependencies, and temporal autocorrelation. We also consider recent developments 

in the econometrics of causal analysis using fixed effects and the extent to which these ideas travel 

to the directed dyadic case (e.g., Baker et al., 2022; Callaway & Sant’Anna, 2021; de Chaisemartin & 

D’Haultfœuille, 2020; Jakiela, 2021). While these tests jointly capture a broad set of alternative, 

seemingly plausible research design issues, estimated results might also vary across different 

subgroups of international migration and across different (unobserved) strata of countries, which 

we are unable to evaluate in detail here. 

Most empirical studies of international migration rely on various subsets of global migration 

flows, typically restricted to inflows to OECD countries. The migration flow data is itself an 

estimate based on migration stock data. The most common approach is to calculate the first-

differenced stock (with drop negative or reverse negative flows). Azose & Raftery (2019) argue that 

these estimations are estimations of the lower bound, and develop a “Pseudo-Bayesian” approach 

to estimate actual flows. The differences between the Pseudo-Bayesian approach and the 

minimization approaches are substantial (Abel & Cohen, 2019) and the Pseudo-Bayesian approach 

 
1 The decision to assess the consistency and rigor of a climate effect on international migration across a broad 

set of specifications, as opposed to seeking to estimate such an effect directly and via armed conflict through 

a specific model design, explains the change of the title for this report (originally, the deliverable was titled 

“Climate change, armed conflict, and migration”). 
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leads to better model fits compared to “bronze standard data” 2 (Abel & Cohen, 2019; Azose & 

Raftery, 2019). We explore through sensitivity analysis how estimates change across different, 

commonly applied methods for estimating migration flow, for different spatial subsets, and when 

accounting for the measurement uncertainty reported by Azose & Raftery (2019). 

We find that estimation of individual parameter effects in count, dyadic, fixed effects models of 

international migration often relies on heroic assumptions (LeSage & Pace, 2008; Sellner et al., 

2013); no published article sufficiently accounts for all modeling challenges, and results are quite 

sensitive to different approaches and input data. While it is tempting to build global systems 

models of bilateral migration where everything is included, we should also acknowledge that 

isolating any part of that system is bordering on impossible. In a recent critique of the gravity 

model approach to international migration, Beyer, Schewe, & Lotze-Campen (2022) argue that 

these models are poorly suited to predict future trends in international migration dynamics and to 

capture temporal dynamics in bilateral migration flows. Instead, these models “describe spatial 

patterns of international migration very well” (p.1). Models aimed at predicting migration flows 

indicate that climatic variables are very poor predictors (Kiossou et al., 2020). This suggests that 

any causal climate effect is likely to be highly context-sensitive and not the main driving force of 

bilateral migration flow, which has important implications for how causal models should be 

specified. 

Not only does the estimation rely on heroic assumptions, but it also relies on a set of assumptions 

we are not able to simultaneously account for in single models. For instance, there is currently no 

fixed effects Poisson estimator able to account for spatial autocorrelation in dyadic data. Sellner, 

Fischer & Koch (2013) describe a spatial autoregressive gravity Poisson model, and Glaser, Jung & 

Schweikert (2022) describe fixed effects estimation with spatially dependent count data. Griffith, 

Chun & Li (2019) describe an approach using eigenvector spatial filtering to account for what they 

call network autocorrelation, but we have been unable to implement their algorithm on 

international migration data3. In the absence of a principled approach to accounting for spatio-

temporal dependencies, we explore how estimates are sensitive to the inclusion of covariates that 

capture spatio-temporal (or network) relations. 

2. The Gravity Model of International Migration 

The most common modelling approach to estimate the climate effects on international migration 

flow globally is to employ the gravity model. The model was first described by Newton’s 

Mathematical Principles of Natural Philosophy in 1687. George K. Zipf argued that commuting flows 

in the US were proportionate to the ratio of the population sizes in the origin and destination 

communities on the transportation distance, calling it the 
𝑃1𝑃2

𝐷
 hypothesis (Zipf, 1946). The gravity 

model of trade was discussed by Walter Isard (1954) and later also for migration flows (Isard, 

1966). In its simplest form, the gravity model can be written as 

 
2 Azose and Raftery (2019) define “bronze standard” as data “somewhat inferior to “gold standard” data but 

still sufficient for validation” (p. 121). The “bronze standard” datasets they use are flow estimates from the 

IMEM project (migration flows among 31 countries in the European Union and the European Free Trade 

Association) (Raymer et al., 2013) and migration flows to and from the OECD countries (OECD, 2015). 
3 The issue is computational, as both the stepwise regression and the need to create variables based on a 

Kronecker-product of the fixed effects does not scale well to situations with a high number of fixed effects. 
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𝐹𝑖𝑗 =
𝑃𝑖
𝛼𝑃𝑗

𝛽

𝑓(𝑟𝑖𝑗)
, 𝑖 ≠ 𝑗, 

where 𝐹𝑖𝑗 is the directed flow from i to j, 𝑃𝑖
𝛼𝑃𝑗

𝛽
 are the positive factors in the origin and destination 

creating a gravitational pull (such as population size in i and j) with adjustable exponents, while 

𝑓(𝑟𝑖𝑗) is a resistance term capturing factors that limit bilateral flow (such as the distance between i 

and j). By log-transforming both sides (and acknowledging model errors), we can get a linear 

equation 

log⁡(𝐹𝑖𝑗) = 𝛼 log(𝑃𝑖) + 𝛽 log(𝑃𝑗) − log(𝑓(𝑟𝑖𝑗)) +⁡𝑒𝑖𝑗 , 𝑖 ≠ 𝑗. 

While Zipf’s original gravity model was an empirical claim about the relationship between 

migration flow, population sizes, and the geographical distance between dyads, the more general 

form stated above can use multiple covariates with their own parameters. The core idea is to use a 

log-log directed dyad elasticity specification with information about both the origin, the 

destination, and factors related to their relationship that could affect the size of migration flow. 

Indeed, Zipf (1946) added more covariates by showing how the mode of transportation (highway, 

railway, and airway) did modify the relationship he was interested in (it was less clear for air-

travel than highway travel). 

The error term 𝑒𝑖𝑗 in the stochastic gravity model turns out to complicate things vastly, as we can 

only expect to get consistent estimates of model parameters under very strict assumptions. 

Particularly, the errors must be independent and homoscedastic. For international migration, they 

are neither. It can be useful to think theoretically about why that is the case. 

In Newton’s gravity model, the outcomes of the gravitational pulls are just the combined vectors, 

and the outcomes do not affect parameters in the system (e.g., the mass of an object does not change 

when getting closer to another object). In migration, the gravitational flows are aggregated 

descriptions of individual behavior, and the outcome for an individual can only be discrete. I.e., 

either you stay, or you move.  

People in i that potentially could join the flow 𝐹𝑖𝑗1 can also be part of any other flow 𝐹𝑖𝑗 , 𝑗⁡ ≠ 1 whose 

resistance term 𝑓(𝑟𝑖𝑗) is low enough.  Changes in positive factors anywhere in the system where 𝑅𝑖𝑗 

is low enough can therefore affect the propensity of a person in that part of the system for joining 

one flow rather than another. This suggests that observations cannot be considered spatially 

independent (Fischer & Griffith, 2008; LeSage & Pace, 2008; Sellner et al., 2013). 

Furthermore, both gravitational pulls and resistances are probably a complex function of past flows 

𝐹𝑖𝑗, not only within a specific dyad but probably also informed by other dyads (but probably most 

prominently dyads involving either i or j). Carling, Czaika & Erdal (2020) argue that one of the 

defining characteristics of migration flow is that it has temporal autocorrelations due to, e.g., chain 

migration. Furthermore, restrictive migration policies might come as a function of past migration and 

is known to have a deterrent effect on migrant inflows (Carling et al., 2020). However, such policies 

might divert the flows to other countries instead – showcasing one of many possible interactions 

and dependencies between temporal and spatial processes. The temporal aspects of real-world 

migration has been explored in the gravity model setting through the notion of network 

autocorrelation (Chun, 2008; Chun & Griffith, 2011; Griffith et al., 2019). However, it is still fair to 

say that the interest in temporal patterns and dependencies in migration (and their consequences) 

has been less pronounced than the interest in modelling spatial patterns (Beyer et al., 2022). 

Heteroscedasticity can occur for many reasons, but the main reason for it to occur in international 

migration is that migration flow counts are heavy tailed, even after log-transformation (Bijak, 2011). 

This tends to result in models that predict better in relative terms when the flow is small than when 
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it is large (where it tends to underpredict). The outliers of this stochastic model then must be 

accounted for using covariates, which is difficult to do because the number of observations with 

large migration flows are small and reasons for very large population movements possibly are quite 

idiosyncratic. Controlling for population - or using per capita flows or a population offset - and other 

important explanatory factors of migration such as distance could possibly reduce 

heteroscedasticity, but not alleviate it entirely. 

2.1 Alternatives to the Gravity Model 

An alternative to estimating the linear causal effect of covariates on international migration is to 

evaluate the predictive performance of models with and without covariate information. A benefit 

with this approach is that we are attempting something simpler than isolating the causal effect of a 

single variable. Rather, we ask whether knowing covariate information enables us to predict 

subsequent outcomes. Prediction comes with its own set of issues, such as proper measurement of 

predictive performance and avoid using post hoc information in model training. However, these are 

arguably easier problems than causal inference. Prediction is useful even if we assume that we have 

correctly estimated the causal effect, if the inclusion of the variable does not improve predictions of 

the outcome, then either the effect has changed over time or it is not substantial. We should generally 

demand that variables both contribute to predicting the outcome and showcase the expected causal 

effect in attempts at isolating it (Ward et al., 2010).  

Recent research show that machine learned models (e.g., fully connected artificial neural networks 

and Long Short-Term Memory models) predict international migration better than the log-linear 

gravity model with origin, destination, and year fixed effects (Golenvaux et al., 2020). More 

generally, there is large development and much creativity in modelling approaches that aim at 

predicting migration outcomes (see, e.g., Lenormand et al., 2016; Robinson & Dilkina, 2018; Simini 

et al., 2012).  

One general point worth highlighting is that there has been interesting developments in how to 

measure predictive performance, with a harmonic mean (2𝑎𝑏 𝑎 + 𝑏⁄ ) alternative in the Common Part 

of Commuters (CPC)4 devised for migration flow networks (Lenormand et al., 2016). Errors 

measured with the harmonic mean tends to be less sensitive to outliers and more sensitive to small 

values. The CPC is also a coefficient between 0 and 1, meaning that performances can be compared 

across different data-samples (just as R2 is a relative alternative (and proportional) to the mean 

square error). However, in our opinion, the most interesting part of the CPC is that it can easily be 

extended to measure how well a prediction captures the topological structure of a network 

(“Common Part of Links”), i.e., the extent to which the prediction correctly predicts 0 flows and >0 

flows5, and the observed commuting distance patterns (“Common Part of Commuters According to 

the Distance”). Due to the zero-inflated and heavy tailed distributions in international migration 

flow data, we would also think that probabilistic approaches would be useful (e.g., Czado et al., 

2009). 

It can be shown that different types of models are better optimized towards different types of 

prediction errors, and a sole focus on the mean square errors might be misplaced (Golenvaux et al., 

2020; Robinson & Dilkina, 2018). The focus should probably also be different across applications and 

 
4 More precisely, CPC is a “Sørensen Index” for network flow matrices, which measures the similarity of two 

matrices with positive numbers. 𝐶𝑃𝐶 =⁡
2∑ min(𝑇𝑖𝑗 , 𝑇𝑖𝑗̃)

𝑛
𝑖,𝑗=1

∑ 𝑇𝑖𝑗
𝑛
𝑖,𝑗⁡=1 +⁡∑ 𝑇𝑖𝑗̃

𝑛
𝑖,𝑗⁡=1

⁄  

5 A Sørensen Index with Boolean values is a F1-score, meaning that the Common Part of Links is a F1-score 

for the classification of >0 flow links. 
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levels of analysis. E.g., when predicting international migration, we might be more interested in the 

large flows or large changes in flows (“outliers”) than small and stable flows. 

While parameter inference is difficult in machine-learned models, there are some options available 

to explore variable contributions and effects (Molnar, 2019). This is done in Kiossou et al. (2020), 

who explore feature importance and Partial dependence plots6 (PDP) for input-variables in an 

artificial neural network (ANN) model of international migration flow. They find that drought 

(SPEI) and disaster data, when added to such prediction models, contribute little to improve 

predictive performance. Exploring the PDP, they find that if anything, drought events are predicted 

in the model to decrease international migration flow (although the effect is negligible). Their ANN 

model is substantially better at predicting migration flow than the Poisson gravity model. 

3. Modeling Decisions Explored in Sensitivity Analysis 

We have identified several issues regarding the international migration flow data, causal 

identification with panel data using fixed effects, and practical estimation that has been argued in 

previous literature is likely to affect parameter estimates and standard errors. In the following, we 

describe these issues and how we explore these issues using sensitivity analysis. 

The sensitivity analysis is also motivated by the fact that published literature that aims to estimate 

the effect of climate variability on international migration flow have made slightly different 

choices. One aim with the sensitivity analysis is therefore to explore whether these choices can 

explain the different results. Table 1 provides an overview of the main specifications used in this 

literature. 

 

Table 1. Main specifications in gravity models of climate variability and international migration 

Article Outcome Spatial 

Scope 

FE type Climate 

variable 

Method Std. err. 

Backhaus et 

al. 2015 

log(flow + 1) 19 OECD O-D + Y T + P OLS HCE 

Beine and 

Parsons 2015 

Per cap. mig. 

rate 

Global 

(Özden et al. 

2011) 

O + Y ΔT + ΔP  PPML 

Poisson 

HCE 

Abel et al. 

2019 

log(flow| 

flow > 0) 

Asylum-

seeking flow 

(UNHCR) 

No SPEI-12 Bivariate 

probit + 

censored 

outcome 

GMM 

O+D 

Coniglio and 

Pesce 2015 

Migration 

flow 

29 OECD O + D-Y ΔT + ΔP  PPML 

Poisson 

D 

Cai et al. 

2016 

log(per cap. 

mig. rate + 1) 

42 mostly 

OECD 

O-D + ttO + 

ttD 

T + P OLS O / O+D 

Note: FE type can be (O)rigin, (D)estination, (Y)ear. O-D is the paired version. ttO is a linear time-

trend in the origin. Climate variable can be (T)emperature, (P)recipitation, or climate anomalies 

 
6 See https://christophm.github.io/interpretable-ml-book/pdp.html. 

https://christophm.github.io/interpretable-ml-book/pdp.html
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e.g., ΔT (somewhat differently calculated in the articles) and SPEI. Standard errors can be 

heteroscedasticity consistent/"robust" (HCE), clustered on (O)rigin/(D)estination or both (O+D). 

3.1 Data on International Migration Flows 

We do not have a complete set of data on international migration flows. Indeed, we only have 

somewhat reliable estimates of migrant inflows for a small number of destination countries 

(mainly within the OECD). Some approaches choose to use this data to estimate effects. However, 

this limits the scope to emigration to rich OECD countries and ignore changes in pull factors from 

other possible destinations. We do have mostly reliable global migrant stock data through 

population censuses asking people about their country of birth (and the current country of 

residence). Some approaches proxy bilateral migration flow through a first-differencing approach 

to the stock data (either censoring negative estimates at zero or reversing the negative estimates). 

Abel (2013) and Abel & Cohen (2019) compare these approaches to other possible ways to estimate 

bilateral migration flow, and concludes that the current best approach is the Pseudo-Bayesian 

approach developed by Azose & Raftery (2019) through validating the estimates against “bronze 

standard” flow data. 

Published research attempting to quantify the influence of climate on international migration 

commonly estimate this effect using the first difference of migration stocks, and often using only 

inflows to (various subsets of) OECD countries. Beine & Parsons (2015) note that the first 

difference approach they use can be defended if return migration constitutes a small share of total 

migration flow. However, Azose & Raftery (2019) reveal that return migration likely takes up a 

large share of migration flow, with the first difference reverse negative approach to accounting for 

return migration being a low estimate. When return migration is expected to be large, it is also 

problematic to use net migration as the outcome variable, since it is not possible to differentiate 

between a case where emigration goes down and a case where emigration stays at the same level, 

but with increased returns. With the exception of Beine & Parsons (2015), who estimate models 

using both the drop negative and the reverse negative differenced stock approach, none of the 

published articles that estimate the climate effects on migration flows have questioned whether 

measurement errors in the outcome affects our ability to estimate this effect. 

The Pseudo-Bayesian demographic accounting approach comes with substantial measurement 

uncertainty. Azose & Raftery (2019) judge the uncertainty bounds of their estimates to be “roughly 

correspond[ing] to an 80% confidence interval whose lower and upper bounds differ by a factor of 

5.4” (SI, p.12) (assuming that patterns from inflows to Europe can be generalized to the rest of the 

world). Measurement error, like any missing data issue, is benign if it is missing completely at 

random (and accounted for when estimating standard errors) but can introduce biases if 

measurement errors are systematic. Since we know that migration inflow statistics are more 

reliable for OECD countries than other destinations, we also know that the measurement errors are 

not missing completely at random. 

With the data from Abel & Cohen (2019) and estimates of measurement uncertainty from Azose & 

Raftery (2019), we are now able to conduct a broader sensitivity analysis of the climate estimates as 

a function of how migration flows are estimated and which subsets of country pairs and years are 

included. We estimate models using all six approaches described in Abel & Cohen (2019): Stock 

differencing drop negative, stock differencing reverse negative, migration rates, demographic 

accounting closed minimization, demographic accounting open minimization, and pseudo 

Bayesian demographic accounting. We estimate the uncertainty of the effect of temperature and 

precipitation on international migration flow when accounting for the measurement uncertainty 

described in Azose & Raftery (2019) assuming these errors are missing completely at random. And 
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we calculate how sensitive estimates are to the choice of spatial scope: All directed dyads, only 

OECD inflow dyads, and only non-OECD inflow dyads. 

3.2 Causal Identification in the Gravity Model Using Fixed Effects 

The causal identification design that motivates the use of a fixed effects gravity model to estimate 

the effect of temperature and precipitation on international migration flows is the difference-in-

difference (DiD) design. In the canonical DiD case, we have two periods (pre- and post-treatment) 

and two groups (those that receive treatment and those that do not). First, we calculate the 

difference in outcome for each group across time (post – pre). Then we calculate the difference in 

the two differences in outcomes across each group (treated - control)7. Assuming parallel trends 

and non-interference, it can be shown that we can estimate the average treatment effect on the 

treated (ATT) using this design (Angrist & Pischke, 2008; Baker et al., 2022). We do not estimate the 

Average Treatment Effect (i.e., the expected treatment effect for the whole population) because we 

are comparing the treated units with a counter-factual that the treated units did not get treated. We 

therefore only estimate the expected treatment effect for the units that got treatment using DiD.  

The DiD design can be generalized to multiple units and multiple time periods using the two-way 

fixed effects form (henceforth TWFE). However, when treatments are “staggered” (i.e., not applied 

at the same time), it can be shown that DiD estimates are likely biased when effects vary over time 

for each unit (Baker et al., 2022). The literature does contain some suggestions for how to diagnose 

this issue (Jakiela, 2021)8 and possible solutions (e.g., Callaway & Sant’Anna, 2021; de 

Chaisemartin & D’Haultfœuille, 2020; Goodman-Bacon, 2021; Sun & Abraham, 2021). The 

implications of these insights are probably widespread across many social-science fields applying 

fixed effects estimators since in most studies of society we should expect effects to vary over time. 

Here, we approach the issue by attempting to diagnose whether the basic fixed effects approach is 

likely to bias our estimates. 

The fixed effects gravity model is remote from the idealized DiD model with multiple units and 

time periods from which we can reasonably derive the ATT. The most obvious challenge is that 

our units of observations are directed flows between an origin and a destination, while treatments 

are given to the spatial units (that are both origins and destinations at the same time). Treatments 

on units will very likely interfere with other units, violating the non-interference assumption. E.g., 

treatments that cause migration flow from A to B also influence return migration from B to A or 

make flow from B to C more likely (when those moving from A to B are in transition to C).  

The assumption that observations in a gravity model are mutually independent has been called 

“heroic” (LeSage & Pace, 2008; Sellner et al., 2013). Practically, it has been shown that both 

coefficients and standard errors are sensitive to accounting for spatial autoregression, e.g., in the 

case of US State migration flows (LeSage & Pace, 2008). None of the models estimating the effects 

of climatic factors attempt to model spatial dependencies other than through the inclusion of 

covariates.  

Ignoring treatment-interference, our treatment (5-year averages in climatic conditions) is “given” 

continuously to all origins and destinations but with varying absolutes and variance. The 

staggered DiD TWFE effect estimate is a “weighted average of all possible two-group/two-period 

DiD estimators in the data” (Goodman-Bacon, 2021). This means that a naïve implementation of 

 
7 https://andrewcbaker.netlify.app/2019/09/25/difference-in-differences-methodology/ provides a visual 

explanation of this. 
8 We draw extensively from the code and discussion by Andrew Heiss in his blog post on the subject: 

https://www.andrewheiss.com/blog/2021/08/25/twfe-diagnostics/  

https://andrewcbaker.netlify.app/2019/09/25/difference-in-differences-methodology/
https://www.andrewheiss.com/blog/2021/08/25/twfe-diagnostics/
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the TWFE leads to comparisons not only between treated and untreated units, but between treated 

and already-treated units. Goodman-Bacon (2021) shows that “when already-treated units act as 

controls, changes in their treatment effects over time get subtracted from the DiD estimate” (p.3). It 

is possible to explore both treatment homogeneity and when comparisons between treated and 

already-treated occurs (through the notion of negative treatment weights) (Jakiela, 2021). While we 

diagnose these issues, we do not know whether there are complications to the fact that we are 

working with dyadic data and have not seen any direct discussions of these issues in the gravity 

case.  

Another entry-point to motivate the gravity fixed effects estimator is to think of it as a theoretical 

model, and deal with identification issues through considering conditional independence 

assumption and potential omitted variable bias (Angrist & Pischke, 2008). Variables that affect the 

outcome and correlate with the treatment are confounders that, if not controlled for, lead to 

omitted variable bias. Here, the argument for using origin and destination fixed effects is to 

account for (fixed across time) “multilateral resistance terms” (Anderson & van Wincoop, 2003). It 

has been further argued that using destination-time fixed effects “will completely account for any 

multilateral resistances in receiving countries” (Beine & Parsons, 2015, p. 732).  

In the literature, these discussions commonly are more general modelling considerations, instead 

of discussing the potential for confounding for any specific treatment. It is quite possible, however, 

that absolute temperature and precipitation are correlated with the ease of international migration 

(i.e., “multilateral resistance”). It is less obvious to us that a country-standardized treatment such 

as the standardized precipitation-evapotranspiration index (SPEI) would be correlated. It might, 

then, be more reasonable to not apply fixed effects when estimating effects of SPEI like in Abel et 

al. (2019) (also see Vestby, 2019), than when estimating effects of temperature and precipitation. 

While motivating the causal inference with the DiD design provides us with leverage over some 

potential issues with our causal estimator, and an idea of what kind of effect we are estimating, the 

standard DiD TWFE literature does not provide a clear recommendation for which fixed effects we 

need to add in the directed dyad setting. Should they follow the units that treatment is being 

applied to, or the units of observation? And which units are treatment applied to? If we follow the 

treatment on the origin, then if we want to estimate the effect of temperature in the origin, perhaps 

origin and year fixed effects would be sufficient? However, if temperature in the origin partially 

correlates with the multilateral resistance terms in destinations when origin-averages are 

controlled for (perhaps due to shocks in destinations correlated with origin temperatures making 

travel more difficult), then maybe we would need to add destination (or destination-year) fixed 

effects too. If we follow the units of observation, we will argue that we need origin-destination pair 

plus year fixed effects (or alternatively origin-destination plus destination-year pairs if we are 

worried about multilateral resistances in destinations varying over time).  

We are unable to provide a principled suggestion as to which of these setups are most correct. We 

do observe that the literature also does not agree on the specification. Backhaus et al. (2015) use the 

origin-destination pair plus year fixed effects, Beine & Parsons (2015)  use origin and destination 

fixed effects, Coniglio & Pesce (2015) use origin plus destination-year fixed effects, while Cai et al. 

(2016) use origin-destination pair fixed effects plus a control for time-trends in origin and 

destination. Abel et al. (2019) do not add fixed effects, but their climatic treatment variable is SPEI9.  

 
9 It should be noted that Abel et al. (2019) estimate three simultaneous equations to explore the mediation 

effect of SPEI on international migration flow through conflict occurrence. This approach does not attempt to 

estimate the ATT or the ATE, but the Local Average Treatment Effect (LATE). The LATE is the average 
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Since treatments are given to countries (or they are averaged at the country level) and not to the 

directed dyads, we will need to cluster our standard errors. It is not clear on what we should 

cluster, however, since it is not entirely clear at what level treatments are “given”. The treatment is 

given to both the origin and to the destination, and climatic conditions (temperature more than 

precipitation) can be spatially dependent across vast distances (possibly covering multiple 

countries or even the whole globe), so that clustering on both origin, destination, and time are all 

reasonable approaches. A more principled approach to standard errors in dyadic data is the 

Dyadic-Robust t-statistic, or to estimate standard errors through bootstrapping (Aronow et al., 

2017; Fafchamps & Gubert, 2007; Tabord-Meehan, 2019).  Bergé (2018), considering a gravity model 

of international trade, use two-way clustering of standard errors on the origin and destination. 

Both Backhaus et al. (2015) and Beine & Parsons (2015) report heteroscedasticity-consistent (HCE 

or “robust”) standard errors. Coniglio & Pesce (2015) specify standard errors clustered on 

destination. Cai et al. (2016) include standard errors clustered on origin in the main specification 

and clustered on the origin-destination pair as robustness check. Abel et al. (2019) cluster on origin 

and destination. 

3.3 Practical Estimation 

While the models we draw our intuition from can be estimated using a simple OLS regression, the 

practical issues of calculating the treatment effect in the gravity-setting quickly escalates. First, 

international migration flow is count data, and in the gravity model, we are supposed to log-

transform both the outcome and the predictors. Both zero-flow observations and estimation issues 

concerning how the outcome is log-transformed can lead to bias. Second, we are not estimating 

just a couple of fixed effects, we are estimating hundreds - or thousands when we use pairs. This 

causes computational issues that must be addressed. Third, our treatments are given 

simultaneously to the origin and destination and not independently to each observation. We 

therefore need to deal with standard errors that should be clustered potentially in complex nested 

ways. Fourth, we need to account for spatio-temporal dependencies. 

The main reason for log-transforming our outcome is that we have more confidence in being able 

to build an additive linear model of the log-transformed outcome than the pure outcome. The 

reason is that the outcome has a heavy right tail. While we should expect our predictive error to be 

small in absolute numbers for small flows, we also expect it to increase as the flows become larger. 

In such settings, it makes more sense to work with a relative scale and relative errors, which is 

what you get when you log-transform the outcome. 

One issue with the log-linear approach is that heteroscedastic errors lead to biased estimators. It 

can be shown that since the expected value of a logged error depends on higher-order moments of 

the error distribution, heteroscedasticity in the model error results in bias of log-linear regression 

parameter estimates (Cohn et al., 2022; Silva & Tenreyro, 2006). The bias can even cause the sign of 

coefficients to be wrong, and the bias can be even worse in fixed effects models (Cohn et al., 2022). 

The simple fix is to use a Poisson model where instead of estimating E(log(y)|X) as in the linear 

case, we estimate log(E(y|X)).  

 
treatment effect for the compliers of the instrument, i.e., those who take the treatment if and only if they 

were assigned to the treatment group (Angrist & Imbens, 1995). In the case of Abel et al. (2019), that means 

that the effect is only estimated for the population of dyadic flows where SPEI increase the likelihood of 

conflict occurrence. Non-compliers are either “always-takers” – those that always have conflict irrespective 

of SPEI, “never-takers” – those that never have conflict irrespective of SPEI, or “defiers” – those where SPEI 

decrease the likelihood of conflict occurrence. 
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An alternative is to scale the outcome to produce a rate. However, as Cohn, Liu & Wardlaw (2022) 

point out, this would require “a suitable scaling variable that captures the potential exposure of an 

observation to the outcome”. Whether the total population in a country is a suitable scaling factor, 

or if only a subset of the total population (“potential migrants”) should be used as a scaling factor 

is not clear. For instance, if countries with most population close to borders of other countries have 

a larger share of their population as “potential migrants”, using the per capita migration rate 

might bias results. Just using the Poisson model is the sounder solution. 

Another issue with the log-linear approach is that we need to offset zero valued outcomes as the 

log of zero is undefined. The offset can in principle be any positive number, but a common choice 

is to add 1, as the log of 1 is 0. However, this arbitrary choice affect estimates whenever there are 

any nonlinear relationships among covariates (which is a likely case), and particularly when the 

mean of the outcome distribution is low and the share of zero observations is large (Cohn et al., 

2022). For directed dyadic international migration, 51% of the observations are zero, the mean is 

2087, and the max is 3 309 139. Moreover, when we offset the outcome, the coefficient estimates 

cannot be interpreted as (semi-)elasticities “or any other quantity likely to be of interest” (Cohn et 

al., 2022, p. 9). Again, using Poisson regression will solve these issues. 

The three first issues (mentioned in the first paragraph of this section) are dealt with via Laurent 

Bergé’s fixest package in R (Bergé, 2018). He has implemented a concentrated likelihood approach 

that can handle any number of fixed effects (and any number of sets/clusters of fixed effects) both 

for the linear and the Poisson case. The package also handles estimation of nested clustered 

standard errors. 

The fixed effects regression functions in fixest have not implemented ways to account for spatio-

temporal dependencies other than through covariates, however. The closest solution we found that 

would account for such dependencies was the eigenvector spatial filtering approach to network 

autocorrelation (Chun, 2008; Chun & Griffith, 2011; Griffith et al., 2019). While this filtering 

approach in principle works in conjunction with the fixest approach, it scales poorly with the 

number of spatial units since we must add the squared-number-of-spatial-units numbers of 

covariates and run a stepwise regression afterwards. With more than 100 spatial units, that means 

more than 10 000 covariates. With almost 200 000 observations, we were unable to fit these models. 

There are plausibly Bayesian MCMC approaches (possibly with random instead of fixed effects) 

that could work. We tried to estimate random effects Poisson gravity models using brms (which 

can in principle model spatio-temporal autocorrelation too), but these did not converge. We know 

of monadic models able to estimate Poisson models with fixed effects and spatial autocorrelation 

(Glaser et al., 2022), but have not seen an implementation of this in R (or any other modeling 

language). We are unsure whether this approach can be used in the dyadic case. 

4. Data 

4.1 Variables 

Outcome: We use the estimates of international bilateral migration flow from Abel & Cohen 

(2019). They provide estimates for each origin-destination dyad for 200 countries in 5-year 

intervals from 1990-2019. They provide estimates using six different methods: stock differencing 

drop negative (𝑴𝒐𝒅
𝑺𝑫𝒅), stock differencing reverse negative (𝑴𝒐𝒅

𝑺𝑫𝒓), migration flow (𝑴𝒐𝒅
𝑺𝑫𝒓), 

demographic accounting (DA) open minimization (𝑴𝒐𝒅
𝑫𝑨𝒐), DA closed minimization (𝑴𝒐𝒅

𝑫𝑨𝒄), and 

DA pseudo-Bayesian (𝑴𝒐𝒅
𝑷𝑩), the latter being the approach suggested by Azose & Raftery (2019). 

Unless otherwise noted, we use 𝑴𝒐𝒅
𝑷𝑩. 
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Treatment: Most studies of the effects of climate on migration flows are exploring the effects of 

absolute temperature and precipitation, temperature and precipitation where country averages are 

subtracted (“de-meaning”), or first-differences in temperature and precipitation, alternatively 

exploring possible moderating contexts (i.e., treatment heterogeneity) by interacting this effect 

with some variable (such as agricultural dependency or absolute temperature/precipitation). 

Temperature and precipitation anomalies, for instance using the Standardized Precipitation-

Evapotranspiration Index (SPEI), are also used in a few studies. When adding fixed effects, 

temperature and precipitation are demeaned, but they retain the country level variance 

characteristics. Estimating treatment effects across units with varying variance characteristics can 

bias the fixed effects estimator because it could lead to treatment heterogeneity (Gibbons et al., 

2019), which could be a reason to standardize the treatment within each country. Temperature and 

precipitation data comes from CRU TS-401 (Harris et al., 2020).  

It is not necessarily clear why we would want to log-transform the predictors in the model (other 

than sticking to the original gravity model specification where all coefficient effects are elasticities). 

A naïve log-transformation of temperature is problematic because it is a continuous variable that 

crosses zero. One approach is to first normalize temperature to become a variable between 0 and 1 

where 0 is the coldest global observation and 1 is the warmest global observation, and then to log-

transform it (adding 1 to the variable before log-transformation to avoid the log of zero). 

Temperatures do not vary much across the globe, it is not extreme-distributed, so it is not clear 

why we would want to cast its effects on a relative scale, however. Furthermore, if the theory is 

that the negative effect of temperature is due to some threshold effect, then assigning treatment 

status whenever we see effects above said threshold might be a better approach. Log-

transformation of precipitation might be more reasonable since it has a long right-tail distribution. 

Here, it might make more sense that effects are linear on the relative scale of the predictor, than on 

the absolute scale. However, again, if the effect of interest is that at some threshold, e.g., there is 

either too little precipitation to support plant growth, or too much precipitation to avoid flooding 

(of plants, of infrastructure, of houses), and that threshold varies across space and time, a global 

linear model would at best be a very basic approximation of the theoretical idea. 

We normalize temperature and precipitation and log-transform them with an offset of 1.  

𝑙𝑇𝑛𝑜𝑡 = 𝑙𝑜𝑔 (
𝑇𝑜𝑡 −min⁡(𝑇𝑜)

max(𝑇𝑜) − min⁡(𝑇𝑜)
+ 1) ⁡= log⁡(𝑇𝑛𝑜𝑡 + 1) 

We denote the normalized, offset, and log-transformed temperature in the origin 𝒍𝑻𝒏𝒐𝒕 and 𝒍𝑻𝒏𝒅𝒕 

in the destination, and 𝒍𝑷𝒏𝒐𝒕 and 𝒍𝑷𝒏𝒅𝒕 likewise for the case of precipitation. 

As briefly discussed in the introduction, we have many other alternatives to how we 

operationalize our climate treatment, either using transformations of temperature and 

precipitation (e.g., in combination such as in SPEI), or extreme weather events such as cyclones, 

heatwaves, etc. Another alternative again would be to use climate disaster data. Some of these 

climatic exposures could arguably affect migration stronger than deviances in 5-year country 

average temperatures and precipitation.  

One reason to use deviances in temperature and precipitation as our treatment (as we do when we 

add fixed effects) is that it is arguably less endogenous to the social system than extreme weather 

events and natural disasters (although variances in temperatures and precipitation might pick up 

differences in how societies have adapted to varying types of climate exposure). It is therefore 

arguably less difficult to estimate causal effects for such variables. At the same time, it might be 

argued that the treatment each unit is exposed to - and for which we are estimating the average 

effect of - when using precipitation and temperature is highly heterogeneous. E.g., a 5-degree 
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deviation in temperature going from 10 degrees to 15 degrees is different than going from 35 

degrees to 40 degrees. Our main reason for using temperature and precipitation here, however, is 

that most published studies using the gravity model to estimate effects of climate on international 

migration flow use these variables. Our aim here is to explore the sensitivity of such estimates to 

varying econometric specifications and assumptions about measurement quality. 

 

Controls: The main controls we use are fixed effects on origin, destination, time, origin-destination 

pairs, and destination-time pairs. Our time dummies are dummies for the 5-year intervals of our 

data. In most specifications, we do not add any other controls. However, we estimate the effects of 

temperature in the origin, temperature in the destination, precipitation in the origin, and 

precipitation in the destination simultaneously10.  

To further explore the effects of spatio-temporal dependencies, we add covariates that are all log-

transformed with an offset of 1.  

We add the population in the origin (𝑷𝑶𝑷𝒐) and destination (𝑷𝑶𝑷𝒅) from WDI (SP.POP.TOTL). 

We calculate dyadic distances between country polygons from the cShapes dataset (Weidmann et 

al., 2010). While distances do change somewhat over time due to border-changes, we used values 

from 2015 (no changes since 2011) for simplicity (𝑫𝒐𝒅). Dyadic trade data was taken from 

Correlates of War Trade 4.0 (Barbieri et al., 2009). We use the “smoothtotrade” variable (𝑻𝑭𝒅𝒐
𝒐𝒅) 

which is the sum of the trade flow from both directions smoothed over time. We attempt to control 

for spatial autocorrelation by controlling for the sum of migration flow (using the Pseudo-Bayesian 

Demographic Accounting method) into the destination minus the flow from the origin (𝑴𝒅
𝒊𝒏), the 

sum of migration flow from the origin minus flow to the destination (𝑴𝒐
𝒐𝒖𝒕), the sum of 𝑴𝒅

𝒊𝒏 for the 

first-order neighbors of the destination (𝑴𝒅̇
𝒊𝒏), and the sum of 𝑴𝒐

𝒐𝒖𝒕 for the first-order neighbors of 

the origin (𝑴𝒐̇
𝒐𝒖𝒕). We seek to control for temporal autocorrelation using the lagged dependent 

variable (𝑴𝒐𝒅,𝒕−𝟏
𝑷𝑩 ). 

4.2 Descriptive Statistics 

Using dyadic data on international migration flows, we analyze the impact of climate on 

migration, accounting for climatic conditions on both the origin and destination side of the dyad. 

This section presents the descriptive statistics of the main variables included in the analysis. We 

proceed with describing the patterns in the data, primarily focusing on the distinction between 

migration to and from OECD and non-OECD countries, where inflows to OECD countries have, 

due to data availability, been the primary focus of existing climate-migration analysis. Next, we 

explore the relationship between migration flows and differences in temperature in origin and 

destination countries, highlighting the fact that most people migrate to countries with relatively 

similar temperature levels. Last, we highlight the fact that most migration also trigger return 

migration, where people travel back to their country of origin, a notion that is often overlooked in 

the climate-migration literature. 

In this paper we do not limit our empirical approach to looking at climatic conditions only in the 

origin country, often seen as a push factor, but we also account for climatic conditions in the 

destination country. We estimate the dyadic flows of migrants, including data at the origin and 

destination side of the dyad. Table 2 presents the general descriptive statistics of the dependent 

 
10 The sensitivity estimates for the temperature and precipitation in the destination are for the most part not 

reported. 
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variable and main independent variables.  

Table 2. Descriptive statistics  

Variable Mean Median Min Max NotNA PropNA 

𝑴𝒐𝒅
𝑷𝑩 2087 0 0 3309139 234048 0 

𝑻𝒏𝒐 0.7 0.798 0 1 189729 0.189 

𝑷𝒏𝒐 0.3 0.271 0 1 189729 0.189 

𝑷𝑶𝑷𝒐 33037800.5 6813200 62152 1379860000 224399 0.041 

𝑫𝒐𝒅 6427705.2 5869881.9 0 19160168 167686 0.284 

𝑻𝑭𝒅𝒐
𝒐𝒅 540.8 0.4 -9 618167 91805 0.608 

𝑻𝒏𝒅 0.7 0.798 0 1 189729 0.189 

𝑷𝒏𝒅 0.3 0.271 0 1 189729 0.189 

 

Most of global migration flows within continents and between neighboring countries (Moore & 

Shellman, 2007). Simple calculation linking our dyadic flow data with a spatial contiguity matrix of 

countries, we find that almost 35% of the world’s international migrants move to first-order 

contiguous countries. However, many migrate to countries farther away. A popular notion is that 

most international migration flows go to OECD countries (Neumayer, 2004). However, this could 

be a result of data availability, or simply the empirical focus. As Figure 1 shows, most international 

migration occurs between non-OECD countries, and most immigrants to OECD countries arrive 

from other OECD countries. This aligns well with the fact that in 2017, 85 % of all migrants were 

hosted in developing countries (UNHCR, 2018), suggesting that most international migration is 

primarily dominated by south-south flows. 

 

 

Figure 1. Global migration shares by OECD status for origin and destination country  
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Since international migration most commonly takes place between contiguous neighbors, that also 

suggests that most migrants go to countries with similar climatic conditions. Figure 2 shows the 

distribution of migration flow across temperature differences between origin and destination 

countries. 62% of migrants move to countries with average temperatures that deviate less than 5 

degrees Celsius from their country of origin. 

 

 

Figure 2. Migration flow against the difference in temperature in origin and destination countries 

 

Migration flows are not constant, nor unidirectional, but migrants leaving are also often returning 

home, either permanently or to work, visit or maintain property or land in their original location. 

Migrants are also largely affected by conditions in the destination country. This aligns closely with 

one of Ravenstein’s (1885) laws of migration which stipulates that every migration flow produces a 

compensating counter-current. Figure 3 shows how migration flows between dyads in 2010 relate 

to the reverse dyadic flow in 2015. Flows out usually also trigger flows back. Previous research has 

given little attention to conditions in the destination country. In this paper we account for 

conditions in the destination country by including temperature and precipitation in the 

destination. 
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Figure 3. Directed dyadic migration flow in 2010 and the reverse dyadic migration flow in 2015 

5. Sensitivity Analysis 

 In this section, we report the results from a variety of sensitivity tests such as exploring the impact 

of taking measurement uncertainties into account, the impact of econometric choices such as 

various fixed effects, ways to calculate standard errors, and the log-linear versus Poisson 

approaches, and the impact of adding covariates that account for (some) spatial and temporal 

dependencies. Additionally, we diagnose assumptions in the DiD TWFE model when we have 

staggered treatments. 

5.1 Measurement Uncertainty of the Outcome 

5.1.1 Temperature 

Figure 4 shows estimates of the effect of temperature (𝒍𝑻𝒏𝒐)⁡on international migration flow across 

the six different methods to estimate international migration flow from Abel & Cohen (2019). The 

figure reveals significant variation in estimates depending on how international migration flow is 

defined. The largest positive effects are estimated when using the stock differencing drop negative 

or demographic accounting open approaches, while migration rates and the Pseudo-Bayesian 

demographic accounting approaches yields estimates closest to zero. 
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Figure 4 Sensitivity of temperature estimate on method of calculating international migration flow 

 

When we only estimate effects with flows to OECD destinations (Figure 5), the effect tends to be 

larger than when we use all dyads. 

Figure 6 shows a simulation where we add a random Student-t distributed measurement error 

with 7 degrees of freedom and a scaling factor of σ = 0.59 (Azose & Raftery, 2019 SI p.12) to the 

outcome. We assume this error is completely at random. It shows that the standard error of the 

temperature estimate is underestimated when we are not accounting for measurement errors, and 

quite substantially so. Since we add the error completely at random, we should not expect this 

approach to bias the estimate. However, if measurement error is correlated with temperature, then 

it could also induce bias. Since temperature is correlated with socio-economic development and 

bureaucratic capacity, it is not unlikely that measurement errors and temperature correlate. 
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Figure 5. Sensitivity of temperature estimate on spatial subset 

 

 

Figure 6. Sensitivity of temperature estimate based on a simulation where measurement 

uncertainties in the demographic accounting pseudo-Bayesian estimate of migration flow are 

accounted for assuming measurement errors are completely random 

 

5.1.2 Precipitation 

Figure 7 reveals large heterogeneity in results of the effect of precipitation on international 

migration flow depending on how migration flow is estimated. The stock differencing approaches 

lead to negative estimates, while the migration rate approach leads to positive estimates. The 

demographic accounting approaches are in between. It is also worthwhile to see that uncertainty 

estimates are much larger in the Poisson approach than for the log-linear approach. 
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Figure 7. Sensitivity of precipitation estimate on method of calculating international migration 

flow 

 

Figure 8 shows that the differences in estimates across spatial subsets are negligible for 

precipitation. Figure 9 reveals that the naïve standard error estimates are smaller than what we 

would have when accounting for measurement uncertainties (even assuming these are missing 

completely at random). The difference in estimates is smaller for precipitation than for 

temperature, however. 

 

 

Figure 8. Sensitivity of precipitation estimate on spatial subset 
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Figure 9. Sensitivity of precipitation estimate based on a simulation where measurement 

uncertainties in the demographic accounting pseudo-Bayesian estimate of migration flow are 

accounted for assuming measurement errors are completely random 

5.2 Log-linear vs. Poisson, Fixed Effects, and Standard Errors 

5.2.1 Temperature 

In Figure 10 we see best estimates and 95% confidence intervals of the effect of temperature on 

international migration flow in log-linear models (left) and Poisson models (right) when we vary 

the fixed effects specification (y-axis) and how we calculate standard errors (colors). We see that 

the log-linear specification always produces positive and significant effects when origin fixed 

effects are included. Since we know that the log-linear model is biased when errors are 

heteroscedastic, one might conclude that this biases the effect upwards when we compare 

estimates with the Poisson approach. When estimating the effect of temperature in the origin, it 

seems adding origin fixed effects is the most impactful choice. Adding year fixed effects shifts the 

estimate towards zero. Adding destination fixed effects does not seem to have any large effect on 

the estimate. When using Poisson, there are minor differences between the clustering approach 

and robust standard errors. In the log-linear specification, two-way clustering yields much larger 

standard errors than the robust approach. 
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Figure 10. Sensitivity of temperature estimate on modelling choices: log-linear vs Poisson, types of 

fixed effects, and ways to calculate standard errors 

 

5.2.2 Precipitation 

Estimates of precipitation on migration flow looks to be similarly biased upwards in the log-linear 

approach when we compare with the Poisson models (Figure 11). Unlike the estimate for 

temperature, which seems to move toward zero when adding controls, the estimate for 

precipitation is quite consistently on the negative side (although with large uncertainty bounds). 

 

 

Figure 11. Sensitivity of precipitation estimate on modelling choices: log-linear vs Poisson, types of 

fixed effects, and ways to calculate standard errors 
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5.3 Negative Treatment Weights and Treatment Heterogeneity 

5.3.1 Temperature 

When defining “treated” units as those with origin temperatures that deviate more than a standard 

deviation from the origin mean temperature in any direction, we calculate that 53% of the treated 

units have negative treatment weights.11 The scatterplot in Figure 12 of the residualized treatment 

against the residualized outcome show a slight tendency for the tails of the residualized treatment 

to have larger residualized outcomes. The linear hypothesis test reveals a significant interaction 

between 𝒍𝑻𝒏𝒐 and residualized treatment on the the residualized outcome (F = 8.09, Pr(>F) = 

0.0045). This means that we cannot reject the hypothesis that there is treatment heterogeneity. 

When there is treatment heterogeneity and negative treatment weights, the fixed effects estimator 

of the ATT is biased (Jakiela, 2021). 

 

 

Figure 12. Test of the treatment homogeneity assumption in fixed effects estimation of the ATT for 

the temperature effect on migration flow. Effects are homogeneous when the relationship between 

the residualized treatment and outcome is equal for the treated and control groups 

 

An alternative way to test the treatment homogeneity assumption is to subset the data, as we 

should see the same effect estimate for different subsets if the assumption is correct. Figure 8 has 

already shown us that effects are on average different in OECD inflows than for non-OECD 

inflows. Figure 13 shows that dropping both the earliest (1990) and latest (2015) time-periods tend 

to lead to lower estimates, particularly when using log-linear models. The difference is negligible 

in the Poisson specification. 

 
11 An inherent issue with climate variables is that they are treatments that are applied continuously to all 

units of observations at all times. Indeed, to make any sense, we need to specify when units are more or less 

treated by climate. Since we are using a fixed effects approach on absolute temperature in the origin, 

thinking about treated units as those experiencing extreme deviations from the normal origin temperatures 

might be a reasonable approach. 
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Figure 13. Sensitivity of temperature estimate on temporal subset 

 

5.3.2 Precipitation 

Unlike for temperature, there is not a significant linear interaction term between 𝒍𝑷𝒏𝒐 and the 

residualized treatment on the residualized outcome (F = 3.53, Pr(>F) = 0.06), meaning that we can 

reject the thesis of treatment heterogeneity. We also see this in Figure 14, where there is a less 

tendency that the residualized outcome is above zero when the residualized treatment is deviating 

from zero. 

 

 

Figure 14. Test of the treatment homogeneity assumption in fixed effects estimation of the ATT for 

the precipitation effect on migration flow. Effects are homogeneous when the relationship between 

the residualized treatment and outcome is equal for the treated and control groups 

 

Looking at different subsets, there is less variation in estimates across spatial subsets (Figure 8), 

but still some when dropping years. Interestingly, as can be seen in Figure 15, estimates are biased 

downwards when dropping 2015 in the log-linear model but biased upwards in the Poisson 

model. Dropping 1990 bias the estimate upwards in both the log-linear and Poisson approaches. 
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The differences in estimates across subsets are still smaller for precipitation, and consistent with a 

homogeneous treatment effect. 

 

 

Figure 15. Sensitivity of precipitation estimate on temporal subset 

 

5.4 Adding Covariates (Spatio-Temporal Dependencies) 

Table 3 documents the sensitivity of estimates of temperature and precipitation (in origin and in 

destination) using a Poisson model with origin, destination, and year fixed effects when adding 

covariates in an attempt to account for spatial and temporal dependencies. The general result is 

that estimates are sensitive to the covariate specification. The single covariate that changes climate 

estimates most is the lag dependent variable (𝑴𝒐𝒅,𝒕−𝟏
𝑷𝑩 ). Adding information on migration flow 

from neighbors of the origin to the destination (𝑴𝒐̇
𝒐𝒖𝒕) and into neighbors of the destination from 

the origin (𝑴𝒅̇
𝒊𝒏) seems to affect estimates. One reason here could of course be that neighboring 

countries are treated with the same climatic treatments as the origin and destination (of the unit of 

observation) (i.e., violating the non-interference assumption in the DiD approach). Alternatively, 

flows to a destination is affected by flows to neighboring countries, or flows from an origin is 

affected by flows from neighboring countries (also possibly violating the non-interference 

assumption).  
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Table 3. Sensitivity of temperature and precipitation estimates when adding covariates 

  O+D+Y-1 O+D+Y-2 O+D+Y-3 O+D+Y-4 O+D+Y-5 O+D+Y-6 O+D+Y-7 

𝑙𝑇𝑛𝑜𝑡  1.26 0.01 3.71 5.19 4.62 3.87 10.11 

  (5.57) (4.94) (4.91) (6.43) (6.46) (6.73) (5.73) 

𝑙𝑃𝑛𝑑𝑡 -5.03 -4.83* -4.43 -5.81* -6.25* -6.40* -2.03 

  (2.61) (2.45) (2.35) (2.60) (2.62) (2.64) (2.19) 

𝑙𝑇𝑛𝑑𝑡  6.53 5.76 6.28 7.46 9.53 10.42 10.36 

  (8.74) (8.00) (7.43) (8.86) (7.69) (7.42) (6.63) 

𝑙𝑃𝑛𝑑𝑡 -2.46 -2.03 -1.97 -2.45 -1.93 -1.97 -3.85 

  (2.32) (2.06) (2.05) (2.32) (2.24) (2.20) (2.66) 

𝑙𝑜𝑔(𝐷𝑜𝑑 + 1)   -0.21*** -0.21*** -0.20*** -0.20*** -0.19*** -0.03*** 

    (0.02) (0.02) (0.02) (0.02) (0.02) (0.01) 

𝑙𝑜𝑔(𝑃𝑂𝑃𝑜 + 1)     1.00*** 1.36*** 1.38*** 1.45*** 1.06* 

      (0.23) (0.33) (0.33) (0.34) (0.52) 

𝑙𝑜𝑔(𝑃𝑂𝑃𝑑 + 1)     -0.22 -0.17 -0.23 -0.29 -1.07*** 

      (0.28) (0.33) (0.32) (0.33) (0.23) 

𝑙𝑜𝑔(𝑀𝑑
𝑖𝑛 + 1)       -0.24 -0.26 -0.24 0.17* 

        (0.17) (0.17) (0.17) (0.08) 

𝑙𝑜𝑔(𝑀𝑜
𝑜𝑢𝑡 + 1)       -0.33 -0.34 -0.34 0.21* 

        (0.21) (0.22) (0.22) (0.09) 

𝑙𝑜𝑔(𝑀𝑑̇
𝑖𝑛 + 1)         0.03 0.03 0.01* 

          (0.02) (0.01) (0.01) 

𝑙𝑜𝑔(𝑀𝑜̇
𝑜𝑢𝑡 + 1)         -0.01 -0.01 -0.00 

          (0.01) (0.01) (0.01) 

𝑙𝑜𝑔(𝑇𝐹𝑑𝑜
𝑜𝑑 + 1)           0.05 0.01 

            (0.03) (0.01) 

𝑙𝑜𝑔(𝑀𝑜𝑑,𝑡−1
𝑃𝐵 + 1)             0.79*** 

              (0.04) 

Num. obs. 141,392 141,392 141,392 141,392 141,392 130,919 109,186 

Num. groups: orig 157 157 157 157 157 157 157 

Num. groups: dest 157 157 157 157 157 157 157 

Num. groups: year 6 6 6 6 6 6 5 

Pseudo R2 0.49 0.67 0.67 0.68 0.68 0.68 0.92 

 

We also note here that the estimates of precipitation and temperature in the origin (𝒍𝑻𝒏𝒐 and 𝒍𝑷𝒏𝒐) 

and in the destination (𝒍𝑻𝒏𝒅 and 𝒍𝑻𝒏𝒅) are quite similar. None published article have reported 

effects of the climate in the destination on international migration flows. One reason could be that 

the theoretical arguments for such effects are less clear than from the origin. If we should have less 

reason to expect such effects, then the results above should make us suspicious. 

6. Conclusion 

As can be surmised from the key take-aways below, the sensitivity analysis shows that we likely 

know less about the effect of temperature and precipitation on international migration flow than 

what published literature has led us to believe. Our epistemic uncertainties are larger than what 

has been reported and there are likely other issues that we do not bring up here (Bijak & Czaika, 

2020).  
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While the key issue in this report has been on our ability to estimate the causal effect of climate 

variability exposure on international migration flows, it can be useful to think about what kind of 

treatment exactly we are trying to estimate the causal effect of, and if it makes sense to estimate 

such an effect. To conclude, we therefore discuss some issues regarding this approach more 

generally. 

As both climate variances and absolutes (average conditions) vary across countries, so do the 

“treatment” the countries are exposed to. Since treatments vary, we should expect treatment effects 

to vary too. Another source of treatment heterogeneity is that we should expect variance in 

climatic exposure across individuals in countries over 5-year periods, and a third source is the 

varying effect such exposure has on the migration choice depending on the contextual factors and 

individual circumstances. The average effect of these varying exposures might not be particularly 

relevant for any case where climate exposure did affect the migration choice.  

Increasing spatio-temporal resolutions of empirical data could be seen as a useful approach. 

However, there are limitations to this approach, particularly that climates and weather events are 

dependent across space and time (so that the actual “number” of independent treatments are 

limited). High temporal resolution could also limit our ability to identify compound climatic 

exposure. Higher resolutions also put higher demands on the quality of migration data – quality 

that does not generally exist for historical data. 

If most international migration is to nearby areas or countries with similar climates, which issues 

are migration supposed to solve for those who choose to migrate due to climatic exposure? One 

possible answer here is that they seek access to areas or livelihoods less vulnerable to more specific 

climate induced natural hazards (e.g., erosion, landslides, floods, droughts, extreme temperatures, 

tropical/convective storms). However, if that is the case it would make more sense to try to 

estimate a causal effect of such natural hazards rather than of average temperatures or 

temperature deviations. 

This report has focused on international migration. The gravity model has also been used to 

estimate internal migration flow, most prominently in the World Bank-commissioned 

Groundswell Reports (Clement et al., 2021; Rigaud et al., 2018). It is reasonable to assume that 

climate exposure is more likely to affect proximate mobility within countries than cross-border 

migration (McLeman, 2014). However, estimating causal effects for internal migration might be 

even more difficult than for international migration. First, just estimating internal migration flows 

puts large demands on data quality and is partly driven by strong assumptions such as constant 

birth- and death-rates within countries or within urban and rural parts of countries (Alessandrini 

et al., 2020; CIESIN, 2011). Furthermore, the quality of subnational population data has been 

debated (see e.g., Thomson et al., 2021). Second, it is probably even more difficult to account for 

non-interference in climatic treatments in a domestic setting. While we have been unable to 

ascertain exactly the econometric approach used in the Groundswell Reports, we assume that the 

identification issues we report here are also relevant for internal migration flow. 

Rather than aiming for a global model of the relationship between climatic exposure and 

international (or internal) migration flow, which would have to account for varying measurement 

quality and spatio-temporal dependencies and where the global effect is likely to be small, we 

believe a more fruitful approach is to collect high-quality data on specific cases where the 

theoretical and empirical link between climatic exposure and migrant behavior is more directly 

apparent. Additionally, since the possibility for causal inference is contested, we should 

complement causal inference analysis with evaluations of predictive performance with and 

without climate information (e.g., Kiossou et al., 2020; Schutte et al., 2021). 
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KEY TAKE-AWAYS FROM THE SENSITIVITY ANALYSIS: 

• Methodological choices have a substantial impact on the estimated effects of temperature 

and precipitation on international migration flows. Methodological choices are likely an 

important cause for the variance of estimated effects reported in published literature. 

• Measurement uncertainties – unaccounted for in published literature – have substantial 

impact on our estimates. We know less about the magnitude and consistency of climate 

effects on international migration than what published estimates lead us to believe. 

• It is not clear that we are able to identify causal effects of climatic exposure on international 

migration flow using the gravity model with fixed effects. Particularly, the assumption of 

treatment non-interference seems to be violated. No published article directly controls for 

spatio-temporal/network dependencies. We are unable to find an econometric approach 

that does this in an adequate fashion. 

• Evaluating predictive performance is a recommended supplement or alternative to causal 

inference, particularly in observed studies where assumptions in causal inference are 

difficult to evaluate. Published results exploring the predictive power of climatic variables 

on international migration flow show that such variables are poor predictors. 

• Most international migration occurs between countries that have fairly similar climatic 

conditions (e.g., neighboring countries).  
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